Code No: P18CST02

HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR/SUPPLEMENTARY EXAMINATIONS, JAN - 2023

DATA STRUCTURES

(Common to ECE,CSE,CSIT,IT,CSE(IOTCSBT),AIDS, AIML Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B)

PART-A

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Discuss time and space complexities with an example.	[2M]	1	2
	b)	Define the stack ADT. List the applications of the stack.	[2M]	2	2
	c)	Write pseudo code to reverse the singly linked list.	[2M]	3	3
	d)	Mention the properties of binary search tree. Give an example.	[2M]	4	2
	e)	What are the various rotations on the AVL tree? Explain with an example.	[2M]	5	2

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL			
UNIT-I								
2.	a)	Illustrate the asymptotic notations with suitable examples.	[5M]	1	2			
	b)	Write an algorithm to perform binary search. Analyze its time complexity	[5M]	1	2			
OR								
3.	a)	Write a recursive algorithm to find the sum of the first 'n' integers and derive its time complexity.	[5M]	1	2			
	b)	Write an algorithm to perform the Fibonacci search. Illustrate.	[5M]	1	2			
UNIT-II								
4.	a)	Write an algorithm to perform selection sort. Analyze its time complexity.	[5M]	2	2			
	b)	Arrange the following list of elements in ascending order using insertion sort.	[5M]	2	3			
		40,10,50,50,20,70,10,90,00,80						
5	3)	Write an algorithm for basic operations of the stack	[5M]	2	2			
5.	a) 1.)	Write an algorithm for basic operations of the stack.						
	D)	write an algorithm to convert infix expression to positix expression.	[3M]	2	2			
		UNIT-III						
6.		Write the program to implement the basic operations of the simple queue. List the applications of the queue.	[10M]	3	3			
		OR						
7.		Illustrate an algorithm to insert a new node at the beginning, at the middle position, and at the end of the doubly linked list.	[10M]	3	2			
		UNIT-IV						
8.	a)	Write in-order, pre-order, and post-order traversals for a binary tree with an example.	[5M]	4	3			
	b)	Write an algorithm to discuss the searching, and insertion operations of a binary search tree.	[5M]	4	2			
		OR						

		C			
9.	Insert the following sequence of elements into an AVL tree, starting with an empty tree 10,20,15,25,30,16,18,19 Perform the required rotations.	[10M]	4	3	
UNIT-V					
10.	Write an algorithm to perform the Breadth-First Search technique on the graph. Illustrate with an example.	[10M]	5	2	
OR					
11.	Write the prim's algorithm to find the minimal spanning tree for the given graph. Find the minimal spanning tree for the following graph. $1 \\ 1 \\ 5 \\ 4 \\ 2 \\ 2 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	[10M]	5	3	

R18
