PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR/SUPPLEMENTARY EXAMINATIONS, JAN - 2023
DATA STRUCTURES
(Common to ECE,CSE,CSIT,IT,CSE(IOTCSBT),AIDS, AIML Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Discuss time and space complexities with an example.	$[2 \mathrm{M}]$	1	2
	b)	Define the stack ADT. List the applications of the stack.	$[2 \mathrm{M}]$	2	2
	c)	Write pseudo code to reverse the singly linked list.	$[2 \mathrm{M}]$	3	3
	d)	Mention the properties of binary search tree. Give an example.	$[2 \mathrm{M}]$	4	2
	e)	What are the various rotations on the AVL tree? Explain with an example.	$[2 \mathrm{M}]$	5	2

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Illustrate the asymptotic notations with suitable examples.	[5M]	1	2
	b)	Write an algorithm to perform binary search. Analyze its time complexity	[5M]	1	2
OR					
3.	a)	Write a recursive algorithm to find the sum of the first ' n ' integers and derive its time complexity.	[5M]	1	2
	b)	Write an algorithm to perform the Fibonacci search. Illustrate.	[5M]	1	2
UNIT-II					
4.	a)	Write an algorithm to perform selection sort. Analyze its time complexity.	[5M]	2	2
	b)	Arrange the following list of elements in ascending order using insertion sort. $40,10,30,50,20,70,10,90,60,80$	[5M]	2	3
OR					
5.	a)	Write an algorithm for basic operations of the stack.	[5M]	2	2
	b)	Write an algorithm to convert infix expression to postfix expression.	[5M]	2	2
UNIT-III					
6.		Write the program to implement the basic operations of the simple queue. List the applications of the queue.	[10M]	3	3
OR					
7.		Illustrate an algorithm to insert a new node at the beginning, at the middle position, and at the end of the doubly linked list.	[10M]	3	2
UNIT-IV					
8.	a)	Write in-order, pre-order, and post-order traversals for a binary tree with an example.	[5M]	4	3
	b)	Write an algorithm to discuss the searching, and insertion operations of a binary search tree.	[5M]	4	2
OR					

9.	Insert the following sequence of elements into an AVL tree, starting with an empty tree $10,20,15,25,30,16,18,19$ Perform the required rotations.	[10M]	4	3
UNIT-V				
10.	Write an algorithm to perform the Breadth-First Search technique on the graph. Illustrate with an example.	[10M]	5	2
OR				
11.	Write the prim's algorithm to find the minimal spanning tree for the given graph. Find the minimal spanning tree for the following graph.	[10M]	5	3

